CARBENIC REACTIONS OF 4-DIAZO-4H-IMIDAZOLE WITH BENZENE DERIVATIVES

T. J. Amick and H. Shechter*

Chemistry Department, The Ohio State University, Columbus, Ohio 43210

Abstract: The electrophilic behavior of 4H-imidazolylidene is greatly modified by coordinating groups in benzene derivatives undergoing substitution.

Carbenes (Y₂C:) react with benzenes (C₆H₅Z) to give (1) bicyclo[4.1.0]heptadienes (1) which may convert to other bicyclo[4.1.0]heptadienes (1'), cycloheptatrienes (2) and their re**arrangement products and (2) substituted benzenes (3) by isomerization of 1 and/or 1,' and/or . ., by more direct processes.' Addition of carbenes to electron-donating benzenic substituents** (I, **Br, Cl, 0CH3 and CN) has also been reported to yield ylides (4) and/or products there**of.^{1T,J,K} As yet, however, information is limited with respect to the directing effects of **substituents, the reactivity patterns and the multiplicity factors in substitution of benzenes** by carbenes. We now describe the behavior of benzene derivatives with 4H-imidazolylidene (5) **generated photolytically and thermally from 4-diazo-4!-imidazole (6) prepared by diazotization of 4(5)-aminoimidazole dihydrochloride and neutralization of the resulting imidazole-4(5) diazonium chloride.2a These studies (1) clarify the principles for addition of singlet carbenes to benzenes, (2) show that ring-opening of spironorcaradiene intermediates occur by highly-selective dipolar processes and (3) reveal remarkable coordinative and ortho directing influences of certain substituents in carbenic aromatic substitution.**

Irradiation (Hanovia 450-watt mediun pressure Hg lamp in Pyrex, -25'C) and thermolysis (78'C) of 5 in cyclohexane and in benzene yield 4(5)-cyclohexylimidazole (8) and 4(5)-phenylimidazole (9), respectively.2b Apparently B is formed by insertion of 5 into a C-H bond of cyclohexane to form 7 which then isomerizes. The photolytic and thermolytic molar reactivi- _ ties of 2 with benzene compared to cyclohexane are 3.8:l.O and 3.0:1.0, respectively. Also, 1,3,5_trimethylbenzene is substituted by 2 to give only 4(5)-(2.4,6-trimethylphenyl)imidazole (10). There is no isotope effect $(k_H / k_D = 1.00)$ in competitive capture of 6 produced photolytically in mixtures of benzene and benzene-d₆. Thus 5 is an electrophilic carbene which **attacks the pi-electrons in (1) benzene in preference to the C-H bonds in benzene or in cyclohexane and (2) 1,3.5-trimethylbenzene rather than C-H in its methyl groups. Triplet ESR signals are not observed for 5 upon irradiation of 6 in methanol, ethyl ether, chloroform or carbon tetrachloride at 780K.2C These latter experiments, though not definitive, strongly** indicate that 5 is a ground state singlet carbene and not a triplet which reacts with the **matrices too rapidly for ESR detection.2d*e**

Photolyses and thermolyses of 6 (9.5 x 10^{-5} - 2.4 x 10^{-3} M) were then effected in substi**tuted benzenes and in mixtures of benzene and individual monosubstituted benzenes to give 4(5)-o,m and e-(substituted-phenyl)imidazoles (!6\$-~, Table 1).** Anisole **and t-butylbenzene -** undergo major ortho (57-67%), minor para (20-29%) and no detectable meta substitution by 5. **Reactions of chlorobenzene result inpara (71-80X) and ortho** (l-11%) substitution. **Meta (84-** 88%) along with 12-16% ortho attack occurs however with α, α, α -trifluorotoluene. In substitution of the above benzenes 5 is a highly selective ortho and para or a meta reactant. The competitive reactivities of the benzenes: anisole > t-butylbenzene > benzene > $\alpha,\alpha,\alpha-tri$ fluorotoluene show that 5 is electron-demanding. The differences in the reactivities of the **benzenes are small however and thus kinetically 2 is quite an indiscriminate electrophile.**

Table 1. Percentage Compositions of the 4(5)-o,m and e-(Substituted-phenyl)imidazoles (16a-c) from Photolyses and Thermolyses of 6 in Substituted Benzenes; Relative Photolytic and **TtieFrnsl Molar Reactivities of the Indicated-Substituted Benzene Compared to Benzene.**

aDetermined from photol{ses or thermolyses of 5 in dilute solutions of equimolar substituted benzenes and benzene. ''Products other than 16a-c were identified in these experiments. ''A
third product (10%) assigned by ¹H NMR as 4(5)-(2-methyl-2-phenylpropyl)imidazole was detected **by gc. dConducted at 100°C. eEffected at reflux temperature.**

The reactivity behavior and the highly directed electrophllic substitution patterns in the above experiments are interpretable (Eq 1) by (1) low activation energy, rate-determining exothermic additions of singlet 5 in its p² state (11)^{2d} to benzenes (12) via transition states 13a-c which resemble the reactants and thus have minor dipolar character, (2) formation of isomeric imidazolospironorcaradienes 14a-c, (3) relatively rapid conversion of <u>14a</u>-c to dipolar intermediates 15a-c in which substituent effects control ring-opening and (4) hydrogen rearrangement to yield isomeric 4(5)-(substituted-phenyl)imidazoles (16a-c).^{2f} For 5 to effect <u>ortho</u> substitution of anisole and t-butylbenzene, the controlling factors to 13a and/or 191 are electronic rather than steric⁴⁹ and intermediates of type $14a$ and/or $14b^{49}$ have to be

major. Norcaradienes !{b_ and/or possibly 14_c_ however would predominate in the reactions of 2 with α , α , α -trifluorotoluene to give the observed high-order meta-substitution.

Substituents having non-bonded electron pairs on atoms attached to phenyl groups also react with 5. Thus, along with its photolytic and thermal conversions to 16a and 16c (Z = **OCH3), anisole is cleaved to 4(5)-phenoxyimidazole (19,; 14 and 13%). Formation of 12 clearly** illustrates attack on oxygen of anisole, presumably via ylide 17. Although the fate of the methyl group in 17 is unknown, production of 19 is explained by (1) methylation of nucleophiles such as 6 , anisole and/or 16a and 16c $(Z = OCH_3)$ and then protonation of 18 (Eq 2).

A further aspect of the behavior of benzenes having substituents with non-bonded electron pairs is revealed in the reactions of 6 with chlorobenzene to yield 5-chloro-1-phenylimidazole (20, >3%) and 4(5)-chloroimidazole (21, 15%) along with 4(5)-(o- and p-chlorophenyl)-imid **zoles (16; Z1 and Z3 = C1).2h Products ?O and ?i imply addition of 5 to chlorobenzene to give** ylide 22 which (1) isomerizes to 20^{2j} and (2) collapses homolytically with chlorine transfer, to give 23 and phenyl radicals. Subsequent hydrogen abstraction by 23 yields 21.

Of greatest present interest is that in the reactions of 6 with benzonitrile (bp 188'C) and nitrobenzene (bp 210^oC), either photolytically or at reflux, (1) the cyano and the nitro groups are powerfully ortho directing, (2) meta substitutions far outweigh that at the para **positions and (3) the reactivities of the highly electronegatively-substituted benzenes are** less than for benzene (Table 1). Even more spectacular is that the distributions in ortho, **meta and para substitutions of benzonitrlle (52% yield) and nitrobenzene (72% yield) at 100°C are 97:2:0.3 and 92:8:0, respectively. It is thus noted that, if the mechanism of reaction of** 5 with α , α , α -trifluorotoluene (Eq 1) is the same as that with benzonitrile and nitrobenzene, **spironorcaradienes 24 (2 = CN and N02) would be major intermediates.2j -- For 25 (Z = CN and N02) to be formed however as the principal products from 24, the rearrangement reactions would --**

have to occur by highly-specific diradical processes (Eq 3).^{2j} Because such mechanism changes **seem unlikely, it is proposed that the enhanced ortho substitution reactions of benzonitrile** and nitrobenzene arise from coordination of 5 (or 6 with collapse to 5 or modifications there**of) with the cyano and the nitro groups and reorganization perhaps as illustrated in Eq 4. Whatever be the details of such processes, complexation of electrophilic carbenes or their diazo precursors with electron-donor substituents is important in aromatic substitution.**

Acknowledgment: This research was supported by the National Institutes of Health.

References and Notes

- 1. **(a) M. J. S. Dewar and K. Narayanaswami, J. Am. Chem. Sot., 86, 2422 (1964). (b) J. A.** Berson and M. R. Willcott, III, <u>ibid</u>, 87, 2751, 2752 (1965). (c) E. Ciganik, <u>1bid.</u>, 89,
1458 (1967). (d) J. A. Berson and M. R. Willcott, III, <u>ibid.</u>, 88, 2494 (1966). (e) Ĵ. A. **Berson, P. W. Grubb, R. A. Clark, D. R. Harter and M. R. Willcoif,** III, **ibid** (1967). (†) W. H. Pirkle and G. F. Koser, <u>1bid</u>., 90, 3598 (1968) (g) M. Jones, J. Org. Chem., 33, 2538 (1968). (h)H. Durr and G. Scheppers, Justus Liebigs Ann. Chem., 734, (1971). (i) H. Durr, H. Kober, V. Fuchs and P. Orth, J.C.S. Chem. Comm., 973 (1972). (j)
W. A. Sheppard and O. W. Webster, J. Am. Chem. Soc., 95, 2695 (1973). (k) W. Magee and H. Shechter, <u>1bid</u>., 99, 633 (1977). (1) W. L. Magee and H. Shechter, <u>Tetrahedron Lett.</u>, 4697 **H. Shechter, <u>J. Org. Chem.</u>, 49, 62 (1984).** r'; **and J. Vilarrasa, J. Chem. Lett., 1489 (1980). (n) M. NagaraJan and**
- 2. (a) Extraction (CH₂Cl₂), drying (Na₂SO_A) and vacuum removal of solvent gives 6, a sensi**analyses and spectral (IR** tive product, to which various solvents were added. (b) All new products have proper **H NMR and MS) properties. (c) We thank Dr. M. Platz for his help in these experiments: (d) Calculations by T. J. Pmick indicate that azolylidenes with nitrogen in the 2-position are stabilized as singlets.** (e) **At 78'K cyclopentadienylidene is a long-lived triplet ("for hours") in hexachlorobutadiene; E. Wasserman, L. Barash, A. M. Trozzolo, R. W. Murray and W. A. Slager, J. Am. Chem. Sot., 86, 2304 (1964).** (f) Argument against rate-controlling addition of triplet and/or diradical singlet 5 to
benzenes (Table 1) is that the distributions of the isomeric products, the relative^rreac **tivities and the partial rate factors do not correlate with those for substitution of the benzenes by phenyl. substituted phenyl and other free radicals. See D. I. Davies, D. Ii. Hey and B. Summers, J. Chem. Sot. C, 2681 (1971) and D. H. Hey, Adv. Free Radical Chem.,** 2, 47 (1967). (g) Because of their spiro structures 13a-b and 14a-b are not highly
encumbered by Z. Also 14a-c may be formed as (E) and (Z) isomers. (h) Further products
are as yet unassigned. (i) Formally, isomerizat arrangement; A. R. Lepley and A. G. Giumanini, <u>Mech. Mol. Migr., 3</u>, 297 (1971). (j)Homo-
lytic phenylation of α,α,α-trifluorotoluene results in 20% <u>ortho</u>, 40% meta and 40% para
substitution and with a relative reactiv **n 20% ortho, 40% meta and 40% para relative reactivity compared to benzene of 0.99:1** 1.2; F_p = 2.4); C. S. Rondestvedt, Jr. and H. S. Blanchard, J. Org. Chem., 2I, 229 (1956).

(Received in USA 24 June 1986)